
 Performing clean updates with FreeBSD
packages

 Target-Audience: Everybody
 Target-OS: FreeBSD

 Time schedule: Tutorial half day
 Location: Eurobsdcon 2008, Thursday - October 16th 2008

 Author: Dirk Meyer, FreeBSD user since 2.1.0, ports-committer since 2001
 [dirk.meyer@dinoex.sub.org],[dirk.meyer@guug.de],[dinoex@FreeBSD.org]

 Abstract

 How-to manage your own pre build packages and use them as binary updates for distribution over different machines,
reducing the time for updating and maintaining your systems, spanning from small servers to full grown desktops
environments on your workstations. Either to maintain a stable state or keep a bleeding edge on the applications in use,
while using packages in a reproduce able and consistent way.

 Build your packages in a jail, and get rid off ‘build only’ dependencies on the machines your work with, and ensure the
chain of dependencies is clean and in best order, e.g. using the lightweight package cluster.

 Update strategies which are small updates, partial and full rebuild. Deinstallation packages in order, avoiding the evil
-f. Reinstall packages in order and keep track of your installed software.

 Customize your packages by creating local ports, which may forked of a normal port or making a slave port. Test builds
and a quick walk through for creating new ports.

 Overview

 1. Setup of a jail
 2. Ready to start
 3. Ready to build
 4. Updating the host
 5. Extending your ports
 6. References
 7. Questions

 1. Setup of a jail

 How to setup a ‘jail’ to ensure clean package builds on FreeBSD,
making it easy to distribute customized packages for more than one
machine. Also, how to use this scripts as a test environment to
compile new or modified ports.

 1.1. Installation of the clean jail
 1.2. The source
 1.3. Use the ports Luke
 1.4. Get add-ons
 1.5. Customizing

 1.1. Installation of the clean jail.

 Install a base system by extracting the ‘bin’ and ‘etc’ distribution in a
directory. If you have your sources, and have run ‘make buildworld’,
then you can install with make. For convenience I have a script for
setup.

 $ fetch http://people.freebsd.org/~dinoex/batch/pkg_jail
 $ sh pkg_jail init

 1.2. The source

 To build kernel modules and more you need the ‘src’ tree mounted.
This is done by default via ‘nullfs’ the ‘src’ tree from the host, or you
can extract the ‘src’ inside the jail.

 ‘src’ tree needed.
 use nullfs

 or move ‘src’ from the base into the jail

 1.3. Use the ports Luke

 We move the ports tree inside our jail and create an symbolic link to
it.

 $ mv /usr/ports /usr/jail/build/usr/ports
 $ ls -s /usr/jail/build/usr/ports /usr/

 Instead you can also just create a new ‘ports’ tree inside the jail.

 $ portsnap fetch
 $ portsnap extract

 1.4. Get Add-ons

 We create an extra directory for our stuff.

 $ mkdir -p /usr/ports/local/update

 $ cd /usr/ports/local/update

 $ fetch http://people.freebsd.org/~dinoex/batch/README

 $ fetch http://people.freebsd.org/~dinoex/batch/pkg_update

 1.5. Customizing.

 We keep our ‘make.conf’ from the host.
 $ cp /etc/make.conf /usr/jail/build/etc/make.conf

 Usually we add to the file in both host and jail:
 WRKDIRPREFIX?=/usr/tmp/obj

 PACKAGES?=/usr/ports/packages-7-i386

 USE_PACKAGE_DEPENDS=yes

 DEPENDS_TARGET=package

 BATCH=yes

 Ignore files and directories when checking ‘plist’:
 $ cd /usr/ports/local/update

 cat >data/badfiles << ’EOF’

 /usr/local/share/nls/POSIX

 /usr/local/share/nls/en_US.US-ASCII

 EOF

 cat >data/baddirs << ’EOF’

 /usr/local/share/nls

 /usr/local/share

 EOF

 2. Ready to start

 2.1. Get list of packages installed.
 2.2. Collect the data for the jail.

 2.1. Get list of packages installed.

 Instead of using the package name, I decided to use only one key to
represent a port or dependency: the path to the port’s directory.
This allows fast reference to the originating ‘Makefile’ and access to
all the current information we need.

 On the host we need to register what we have.

 $ cd /usr/ports/local/update
 $ sh pkg_update check-installed-ports

 2.2. Collect the data for the jail.

 We simply create the list of ports from the data we collected in the
step before.

 $ cd /usr/ports/local/update
 $ cat data/install-packages.* >data/make-packages.build.local

 3. Ready to build

 We reuse packages until they become obsolete. Therefore, each
dependency is built as a package, so it can be reused for new builds
of a port and for other ports depending on it.

 3.1. We build our first set of packages
 3.2. Updating and makeing the new packages
 3.3. Cleaning up
 3.4. Fetch
 3.5. Errors
 3.6. Major updates

 3.1. We build our first set of packages

 Build ports and their dependencies in a clean /usr/local.

 $ cd /usr/ports/local/update
 $ pkg_update make-packages

 3.2. Updating and makeing the new packages

 Each dependency is checked for the exact version to allow updates and
downgrades. If the exact version is not installed, we have to add or build the
dependency. If a required package is newer than an already existing package of the
port we want, a rebuild is needed to track changes in the ‘build only’ dependencies.

 The update cycle is easy. It can be run unattended, so you have the new packages
at hand when you decide to update. I run ‘csup’ to update the ports tree, then I have
to get rid of obsolete packages. After removing log files from aborted builds, I am
ready to rebuild all the missing packages.

 $ cd /usr/ports/local/update
 $ pkg_update full-update-jail

 3.2. Updating and makeing the new packages

 Or run each step seperatly:
 Step 1: Start "make update" for the ports tree.
 Step 2: Find obsolete packages and move them away.
 Step 3: Rebuild the missing packages.

 $ cd /usr/ports/local/update
 $ pkg_update cvsup
 $ pkg_update clean-packages
 $ pkg_update make-packages

 3.2. Updating and makeing the new packages

 In case you urgent need a simple package with its dependencies,
you can pass the name of the directory as an argument.

 $ cd /usr/ports/local/update
 $ pkg_update make-packages www/lynx sysutils/dmidecode

 For often used subsets you can pass the name of a file which list
the ports you need.

 $ cd /usr/ports/local/update
 $ pkg_update make-packages data/install-packages.test

 3.3. Cleaning up

 Once in a while you like to clean up your ‘distfiles’ directory. I look
for each ‘distinfo’ file in the whole ports tree and compare the list
with the list of downloaded ‘distfiles’. Each file that is no longer
listed in the ‘distinfo’ in any port can be safely moved away to
‘/usr/ports/distfiles/Old/’.

 $ cd /usr/ports/local/update
 $ pkg_update clean-distfiles

 3.4. Fetch

 Usually the distfiles are fetched when needed. But you can script
this easy before build to run chrooted with your external IP, while
the build step runs with an IP of 127.0.0.1.

 $ cd /usr/ports/local/update
 $ pkg_update fetch-distfiles
 $ pkg_update fetch-recursive-distfiles

 3.5. Errors

 In active development of the ports, logfiles are preserved in the log
sub directory. Looking at current sample you can see three different
types of files.

 -rw-r--r-- 1 root wheel 24890 Sep 15 18:13 build,local,gnumail

 -rw-r--r-- 1 root wheel 120 Sep 15 18:14 plist,local,gnumail

 -rw-r--r-- 1 root wheel 14925 Sep 15 18:23 build,local,projectcenter.app

 -rw-r--r-- 1 root wheel 11309 Sep 15 18:37 build,local,preferences.app

 -rw-r--r-- 1 root wheel 161 Sep 15 18:38 plist,local,preferences.app

 -rw-r--r-- 1 root wheel 57388 Sep 15 18:56 build,local,gworkspace

 -rw-r--r-- 1 root wheel 198 Sep 15 18:57 plist,local,gworkspace

 -rw-r--r-- 1 root wheel 5290 Sep 16 06:25 err,local,gnumail_112

 3.5. Errors

 First there are successful build logs from ports with a name as:
‘build,<category>,<port>’. They stay around until the next
successful build. In case of problems I found the ‘configure’ output
there is very helpful.

 -rw-r--r-- 1 root wheel 24890 Sep 15 18:13 build,local,gnumail

 -rw-r--r-- 1 root wheel 14925 Sep 15 18:23 build,local,projectcenter.app

 -rw-r--r-- 1 root wheel 11309 Sep 15 18:37 build,local,preferences.app

 -rw-r--r-- 1 root wheel 57388 Sep 15 18:56 build,local,gworkspace

 3.5. Errors

 Second we may have files with a name such as:
‘plist,<category>,<port>’. This indicates that after building this
package and deleting its dependency, additional files or directories
were found. Directories can be mostly ignored, but missing files can
indicate a problem with the port or its dependency. If you are a
maintainer, you can fix this by updating the ‘pkg-plist’ of your port.

 -rw-r--r-- 1 root wheel 120 Sep 15 18:14 plist,local,gnumail

 -rw-r--r-- 1 root wheel 161 Sep 15 18:38 plist,local,preferences.app

 -rw-r--r-- 1 root wheel 198 Sep 15 18:57 plist,local,gworkspace

 3.5. Errors

 Last we have a log named ‘err,<category>,<port>’. This can be a
build log in progress or an aborted build. In this case, a ‘diff’
between the new log file and the last successful build log can be
helpful to find the cause.

 -rw-r--r-- 1 root wheel 5290 Sep 16 06:25 err,local,gnumail_112

 3.6. Major updates

 If you upgrade your base system, I recommend you move all packages away. Some
ports have paths that change with the FreeBSD version, or includes and libraries in
the base change, and if you keep the old packages, other problems might occur.

 Update your jail
 installworld

 mergemaster -i

 make delete-old

 make delete-old-libs

 Move all packages away
 $ mv -i /usr/ports/packages7/All/* /usr/ports/packages7/Old/

 Then rebuildung all packages needed
 $ cd /usr/ports/local/update
 $ pkg_update make-packages

 4. Updating the host

 4.1. Preparation of the installed ports
 4.2. Pre flight checks
 4.3. Preparation for the update
 4.4. Downtime

 4.1. Preparation of the installed ports

 In case we had meddled with ‘portupgrade’ on this host, we need to
fix our installed ports registration.

 $ cd /usr/ports/local/update
 $ pkg_update dependency-update

 After a while some ports gets moved or renamed. To ensure
updates can continue, we need to fix the origin of the installed ports.

 $ cd /usr/ports/local/update
 $ pkg_update fix-moved-ports

 4.2. Pre flight checks

 See if our work list is still valid.

 $ cd /usr/ports/local/update
 $ pkg_update check-installed-ports

 Test if we have all needed packages.

 $ cd /usr/ports/local/update
 $ pkg_update show-missing-packages

 4.3. Preparation for the update

 Now check if we are have old ports installed.

 $ cd /usr/ports/local/update
 $ pkg_update clean make-version-list
 $ pkg_update show-version-list

 4.3. Preparation for the update

 In case of light updates we can try:

 $ cd /usr/ports/local/update
 $ pkg_update make-easy-update

 We get a list of ordered ‘pkg_deinstall’ and ‘pkg_add’ commands to
run in ‘easyupdate.${hostname}’. Check this file, it should be safe
to run the commands, but usualy it does not reach deep to update
all ports on your host.

 4.3. Preparation for the update

 If we have more work to do, this is the way to update hundreds of
ports with its dependencies. We create a script to remove all
obsolete ports and the ports that depends on them as
‘deinstall.${hostname}’.

 $ cd /usr/ports/local/update
 $ pkg_update make-deinstall-list

 4.4. Downtime

 Now we can stop some or all services on the host to do the real
update. First the quick way:

 $ cd /usr/ports/local/update
 $ sh "easyupdate.${hostname}"

 In this case we start over at 4.3.

 4.4. Downtime

 The complete update:

 $ cd /usr/ports/local/update
 $ sh "deinstall.${hostname}"
 $ sh pkg_update reinstall

 To check if we get everything you run the next command, usually
the output is empty.

 $ cd /usr/ports/local/update
 $ sh pkg_update clean-reinstall

 Then we can start all services again.

 5. Extending your ports

 5.1. Naming problems in ports
 5.2. Local ports
 5.3. Slave ports

 5.1. Naming problems in ports

 Some ports change their package name while build, and this will be
recorded as a failure, but the built package will kept around. Setting
build options ahead for the port will give you a clean build.

 To set options for a specific port when settings in ‘Makefile.local’ are
not working. I was successful to place this as a conditional in
‘/etc/make.conf’: This should be done on the host and in the jail,
preferred by an include.

 .if ${.CURDIR} == "/usr/ports/multimedia/mplayer"
 WITH_SDL=yes
 WITH_GUI=yes
 WITH_GTK1=yes
 WITHOUT_ESOUND=yes
 CFLAGS+=-O
 .endif

 5.2. Local ports

 To distinguish our local ports we create a Makefile.inc for them.

 $ cat > /usr/ports/local/Makefile.inc << ’EOF’
 PKGCATEGORY?= local
 PKGNAMESUFFIX?= -local
 PKGNAMESUFFIX2?= -local
 EOF

 This done, we can copy any port into /usr/ports/local/ and modify is
for your use.

 5.3. Slave ports

 Slave ports can be very easy created.

 Example:
 /usr/ports/local/mplayer-extra/Makefile:

 MASTERDIR= /usr/ports/multimedia/mplayer

 WITH_SDL=yes
 WITH_XANIM=yes
 WITH_FREETYPE=yes

 WITHOUT_RUNTIME_CPUDETECTION=yes
 WITHOUT_3DNOW=yes

 .include "${MASTERDIR}/Makefile"

 6. References

 [1] http://www.dinoex.de/schulungen/package-en.html
 [2] http://2004.eurobsdcon.org/uploads/media/EBSD04_27.pdf
 [3] http://people.freebsd.org/~dinoex/batch/README
 [4] http://people.freebsd.org/~dinoex/batch/pkg_update
 [5] http://people.freebsd.org/~dinoex/batch/pkg_jail

 7. Questions

 Feedback: Dirk Meyer
 [dirk.meyer@dinoex.sub.org],[dirk.meyer@guug.de],[dinoex@FreeBSD.org]

